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Abstract: Background: To date, no one has prospectively evaluated yoga intervention-induced
changes in brain structure or function in adults with acquired brain injuries (ABI). Thus, this study
was conducted to test the feasibility of acquiring neuroimaging data from adults with ABI before and
after a yoga intervention. Methods: This was a single-arm intervention feasibility study that included
12 adults with chronic (i.e., greater than 6 months post-injury) ABI and self-reported limitations
in balance. Neuroimaging data were acquired before and after yoga. The yoga intervention was
completed once per week for eight weeks. Feasibility objectives and benchmarks were established
a priori. Results: Most feasibility objectives and benchmarks were achieved. The goal of recruiting
12 participants was successfully achieved, and 75% of participants were retained throughout the
study (goal of 80%). All imaging feasibility benchmarks were met; rs-fMRI and fNIRS data were
acquired safely, data were of acceptable quality, and data pre-processing procedures were successful.
Additionally, improvements were detected in balance after yoga, as group-level balance was signif-
icantly better post-yoga compared to pre-yoga, p = 0.043. Conclusions: These findings indicate it
is feasible to acquire neuroimaging data from adults with ABI before and after a yoga intervention.
Thus, future prospective studies are warranted.

Keywords: Hatha yoga; acquired brain injury; resting-state functional magnetic resonance imaging;
functional near-infrared spectroscopy; feasibility study

1. Introduction

Each year, approximately 2.9 million Americans sustain traumatic brain injuries (TBI)
that result in emergency department visits, hospitalizations, and death [1]. TBIs occur when
an external mechanical force affects the head, neck, or body and causes rapid acceleration
and deceleration of the brain within the skull, resulting in damage to brain tissue. ABI is a
broader term that includes TBI and other forms of brain tissue damage, such as damage in-
duced by lack of oxygen (anoxia), reduced blood flow (cerebral vascular accident or stroke),
brain tumors, or other non-mechanical methods of injury (e.g., poisoning). Although
there are many treatment strategies in the early weeks and months after ABI, millions
of individuals live with residual disability [2–4]. This residual, chronic disability often
includes significant physical impairments and ongoing disruptions in brain function [5].
One particularly impactful physical impairment is poor balance, which is associated with
increased fall risk, limited community integration, and reduced quality of life [6–8].

Fortunately, community-based and holistic interventions, such as hatha yoga, may
be effective in addressing balance in adults with ABI, as previous work has shown its
effectiveness in aging [9] and other neurological populations [10]. Hatha yoga incorporates

Brain Sci. 2023, 13, 1413. https://doi.org/10.3390/brainsci13101413 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13101413
https://doi.org/10.3390/brainsci13101413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-3026-7609
https://orcid.org/0000-0002-7755-199X
https://doi.org/10.3390/brainsci13101413
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13101413?type=check_update&version=1


Brain Sci. 2023, 13, 1413 2 of 12

movements that require balance, can be adapted for individual needs, and does not require
physician or insurance authorization. Currently, a few quantitative studies investigating
yoga for individuals with brain injury have found evidence of improved balance after
yoga [11], and other studies (including qualitative studies) have found yoga-induced im-
provements in outcomes such as quality of life [12], community integration [13], and overall
physical functioning [14] in adults with brain injury. However, the neural underpinnings,
or changes in brain structure or function, of functional improvements in specific capacities,
such as balance, after yoga are largely unknown. To date, no one has investigated if yoga-
induced improvement in balance or other functional capacities is supported by changes in
brain structures or function in adults with ABI.

Importantly, there is compelling evidence that yoga can improve brain function—
specifically functional connectivity of neural networks as measured with functional mag-
netic resonance imaging (fMRI)—in healthy adults (see review: [15]). There is also evidence
that yoga breathing can positively influence cortical oxygen metabolism in healthy adults,
as measured by functional near-infrared spectroscopy (fNIRS; [16]). Thus, it is possible
that similar improvements could be detected in adults with ABI, but to the best of our
knowledge, this has not been tested.

Because ABI elicits damage in brain regions and neural networks and is associated
with disability and impairment [5,17,18], it can be more difficult to study adults with
ABI than healthy individuals. Individuals with ABI may have more difficulty participat-
ing in longitudinal intervention studies due to transportation issues, medical conditions
(e.g., epilepsy) that interfere with research appointments, or difficulty engaging in inter-
vention activities that do not accommodate their abilities. Therefore, feasibility studies
should be conducted prior to large-scale intervention studies. Of course, multiple re-
search teams have successfully conducted intervention studies with individuals with TBI
or ABI (e.g., [19,20], but potential barriers to participant recruitment and retention must be
evaluated prior to conducting large-scale work when new protocols are used.

The feasibility of neuroimaging methods with individuals with ABI also requires addi-
tional consideration. Maintaining participant safety is a principal objective for all studies,
and individuals with ABI may have additional safety needs. For example, individuals
with ABI often have limited mobility and use mobility devices (e.g., canes or walkers) for
ambulation [21]. Research studies conducted outside of medical institutes may not have
MRI-compatible devices to support ambulation to and from the scanner, which poses a
significant safety or fall risk. Additionally, individuals with ABI are more likely to have
contraindications for scanning (e.g., metal implants), so careful screening procedures that
consider participants’ cognitive abilities when answering screening questions are essential.
Acquiring high-quality MRI data can also be challenging. Participants with ABI may be
more likely to move during data acquisition or have changes in cortical blood flow from
their injury that confounds the evaluation of the blood-oxygen-level-dependent (BOLD)
signal [22], which is a proxy measure for neural activity. These can negatively influence
individual data quality and/or reduce the ability to generate group-level data. Again, there
are known solutions for these limitations, yet researchers must first confirm that they can
acquire quality MRI data with planned procedures for future studies.

Newer neuroimaging techniques, such as fNIRS, allow for the evaluation of brain
activity with fewer restrictions. However, there are few established methods for fNIRS data
acquisition and analysis—particularly for portable fNIRS devices [23]—which threaten the
usefulness of studies conducted with both healthy individuals and patient populations.
Moreover, there are additional safety and data quality components that must be considered
when conducting research with individuals with ABI. Finally, adaptations to the administra-
tion of performance-based measures, such as balance assessments, to permit simultaneous
fNIRS acquisition may influence performance data. Thus, solutions that preserve both
behavioral and neural data need to be developed to optimize study procedures.

In summary, there is some evidence that yoga can improve functional capacities,
such as balance, in adults with ABI [11], but prospective yoga-induced changes in brain



Brain Sci. 2023, 13, 1413 3 of 12

function have not been evaluated. Thus, this study was completed to assess the fea-
sibility of acquiring neuroimaging data from adults with ABI before and after a hatha
yoga intervention.

2. Materials and Methods

Study Design and Location: A single-arm longitudinal intervention feasibility study
was completed, and the study protocol is available on clinicaltrials.gov, protocol
# NCT05895084. Neuroimaging data were acquired within university laboratories by
trained researchers at assessment visits that occurred 1–2 weeks before and after the hatha
yoga intervention. The hatha yoga intervention was completed once per week for eight
weeks in a classroom on a college campus. Colorado State University’s institutional re-
view board approved all study procedures (Protocol #1799), and all participants provided
informed written consent. Seven primary feasibility objectives and benchmarks were
identified a priori; see Table 1 in Results.

Table 1. Feasibility Objectives, Benchmarks, and Outcomes.

Feasibility Objective Feasibility Benchmark Study Outcome

Recruit and retain adults with ABI for
a longitudinal hatha yoga
intervention with neuroimaging.

Recruit 12 adults with ABI
Retain ≥ 80% (~10 of 12) over the course of
the study.

√
Recruited 12 adults

X Retained 75%

Safely acquire rs-fMRI data in
participants with mobility limitations.

Detect 100% MRI contraindications during
screening. Sustain zero instances of adverse
events (e.g., pain or significant anxiety) or
falls during data acquisition.

√
Detected all contraindications√
Zero adverse events or falls

Pre-process rs-fMRI and demonstrate
acceptable rs-fMRI data
quality indices.

Achieve time series quality indices < 3.5 *
MAD in ≥ 80% of data time points.
Observe similar quality indices as achieved
in a normative sample. Achieve acceptable
FD in the majority (4/6) participants.

√
Quality indices were observed in

86.4–100% of data time points. When
compared to a normative sample, quality
indices z-scores did not exceed 95%.
Acceptable FD was reached in
4/6 participants.

Produce a valid group-based
connectivity map from the precentral
gyrus seed.

Complete visual inspection of the group
seed-based connectivity map for the
precentral gyrus and confirm strong
connections between the premotor areas
and other brain regions associated with
motor function.

√
The connectivity map is valid as visual

inspection shows graded, transitional areas
of connection rather than
random pixelation.

Safely acquire fNIRS data during
concurrent balance testing in
participants with mobility limitations.

Have zero instances of adverse events (e.g.,
pain or anxiety) or falls during
data acquisition.

√
Zero adverse events or falls

Acquire high-quality fNIRS data and
successfully pre-process those data

Reach acceptable signal optimization and
quality levels in ≥ 80% of participants
assessed. Successfully detect and remove
motion artifacts from data in ≥ 80% of
participants assessed.

√
Acceptable signal and quality in data

and all motion artifacts detected and
removed in 90.9% of participants pre-yoga
and 100% post-yoga

Detect yoga-induced improvements
in balance with a modified balance
measure when balance is assessed
with simultaneous fNIRS.

Show a statistically significant
improvement in post-yoga balance
compared to pre-yoga balance
performance.

√
Significant improvement in balance was

detected while using a modified balance, as
group-level improvements were observed
post-yoga, p = 0.043.

Note: ABI = acquired brain injury, rs-fMRI = resting-state functional magnetic resonance imaging,
fNIRS = functional near-infrared spectroscopy, MRI = magnetic resonance imaging, MAD = median absolute
deviation, FD = framewise displacement.

Participants: Prospective participants were recruited via email list serves, newsletters,
flyers, and word-of-mouth. To ensure safe delivery of the hatha yoga intervention, the
targeted sample size was 12 participants. Phone screenings were completed to determine
study eligibility. Participants were included in the study if they had a TBI or ABI that
occurred ≥ 6 months prior and had self-reported balance limitations. Participants were
also screened for significant developmental or neurological conditions that were diagnosed
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before their ABI, and no participants had other significant conditions. Individuals were
excluded if engaged in non-adapted yoga. Of the 12 participants included in the yoga
intervention, we were able to include 6 for MRI methods (detailed below), given the
availability of pilot study funds. Participants were screened multiple times for MRI safety
to detect contraindications (e.g., metal plates in the head, claustrophobia, etc.) and were
included in the hatha yoga intervention even if they could not complete MRI scans because
other study data (e.g., fNIRS data) could be acquired. Participants provided written
informed consent and were reimbursed at a rate of $20 for each assessment visit.

Yoga Intervention: Hatha yoga was delivered by an adaptive yoga specialist and
trained aides once/week for eight consecutive weeks (eight total sessions). Yoga was
delivered in a standardized progression and included mindful breathing with functional
movements, breathwork, mantras, progressively challenging yoga postures (sitting in chairs,
standing, and floor), and guided relaxation/meditation (see Supplement Figure S1). Each
yoga session lasted one hour, was in person, and was delivered in a group format. Adap-
tations were incorporated to support successful engagement in each class and included
modifications to poses, hands-on assistance to support participants in moving and hold-
ing poses, and the use of chairs/props to allow participants to safely and successfully
complete postures.

Measures

Resting State Functional Magnetic Resonance Imaging (rs-fMRI): Functional scans sensitive
to the T2-weighted BOLD signal were collected using a gradient echo pulse sequence with
multiband and echo-planar imaging options (Repetition Time (TR) = 800 ms; Time to Echo
(TE) = 38 ms; flip angle = 52◦; Field of View (FOV) = 210 mm; matrix size = 84× 84; in-plane
resolution = 2.5 mm; slice thickness = 2.5 mm; slices = 54; slice spacing=0; multiband
factor = 6) using a 3 Tesla Siemens Skyra Magnetom and a 32-channel head coil.

Software from Analysis of Functional NeuroImages (AFNI) was used to pre-process
the structural and functional images. Images were processed using a pipeline that in-
cludes segmentation, distortion correction, de-spiking, alignment and co-registration of the
functional images to the structural images, detection of outliers, and blurring. A concern
related to all rs-fMRI datasets is excessive movement, which can produce poor connectivity
maps. That is, if a participant is moving too much during scanning, this can produce
invalid correlations between the seed and other voxels in the brain images. As noted
above, a feasibility objective for rs-fMRI data was to determine whether pre-processing
algorithms that align the rs-fMRI volumes in the time series can produce acceptable quality
indices for 80% of the data points. Additionally, we compared the data from this study with
51 healthy subjects from a separate study completed using the same MRI scanner to compare
quality indices. The quality index is operationalized as one minus the Spearman correlation
coefficient of each image in the time series with the median value (AFNI 3dTqual). Poor
quality is defined as quality index values that are 3.5 times the median absolute deviation
(3.5 * MAD). As an additional quality metric, six motion parameters—three translations
and three rotations—were extracted for each participant and each volume using 3dvolreg in
Analysis of Functional NeuroImages (AFNI) [24]. The rotations were converted to distance.
Framewise displacement (FD) was then calculated for each volume by taking the Euclidean
distance of the translations and rotations [25]. The following formula was used:

FD = |dx| + |dy| + |dz| + |r_x| + |r_y|+ |r_z|

where dx, dy, and dz are the absolute displacement values for translations in the x, y, and z
directions, and r_x, r_y, and r_z are the absolute displacement values for rotation around
the x, y, and z axes, respectively.

Another feasibility objective was to use individual rs-fMRI scans to produce a valid
group-based motor connectivity map from the precentral gyrus (i.e., primary motor cortex)
seed. In particular, the connectivity map should show graded patterns of activity rather
than random pixelation. To produce this map, AFNI’s 3dDeconvolve tool was used. A
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general linear model (GLM) was applied to each participant’s co-registered functional
images (ignoring censored values). The GLM analysis incorporated covariates accounting
for linear, quadratic, cubic, and quartic drift and six motion parameters, as well as the
seed (precentral gyrus) time series. AFNI’s 3dttest++ function was then used to produce
seed-based connectivity maps. The validity of this map was judged qualitatively.

Functional Near-Infrared Spectroscopy (fNIRS) Acquisition with Concurrent Balance Testing:
Balance performance and neural activity were evaluated simultaneously using a portable
fNIRS device, the NIRSport2 (nirx.net), which can accommodate gross motor movements
in more naturalistic environments. Participants were fitted with an appropriately sized cap
that positioned optodes (i.e., near-infrared light sources and detectors) over bilateral motor
cortices and inferior parietal sulci, as these regions are associated with balance [26]; see
Figure 1 for optode placement.
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Figure 1. fNIRS Data Acquisition. fNIRS optodes—light sources and light detectors—were placed
over bilateral motor cortices and inferior parietal sulci to form 53 total channels (i.e., the intersection
of a light source and detector), as depicted in this figure.

Once the cap was placed, a signal optimization step was completed to examine all
53 channels, the intersection of light sources and detectors, to assess if high-quality data
could be acquired. This required that each light source was emitting an adequate amount
of near-infrared light for absorption in participants’ superficial cortical structures and
that the refracted light could be measured, in optical density, by the detectors. If any
channel did not reach an acceptable or excellent level, high-quality fNIRS data could not
be acquired. Acceptable and excellent levels reflect how well light passes through tissues
and is measured in millivolts (mV); excellent values are those greater than 3 mV, acceptable
values are between 0.5 mV and 3 mV, and critical values (when data should not be acquired)
are below 0.5 mV. Additionally, signal quality was assessed, and high-quality data could
be acquired when signal quality was at acceptable or excellent levels. Signal quality was
evaluated using a coefficient of variance—the ratio between the standard deviation of the
raw signal—as calculated over 1.5 s of data. Excellent coefficient of variance values is less
than 2.5%; acceptable values are between 2.5% and 7.4%, and critical values (when data
should not be acquired) are at or above 7.5%. All fNIRS data were acquired using Aurora
software (nirx.net) and pre-processed using Satori software (nirx.net). Pre-processing
included the conversion of optical density data to hemoglobin metrics of oxygenated
hemoglobin (HbO), deoxygenated hemoglobin (HbR) and total hemoglobin (HbT), spatial
registration to the head probe, and temporal processing. During temporal processing, a
motion artifact detection and regression process was used to detect and remove motion
artifacts; see Figure 2.
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tasks included: static stand with eyes open, static stand with eyes closed, tandem stand 

Figure 2. Detecting and Removing Motion Artifacts from fNIRS Data. This figure illustrates how the
motion artifact regression algorithm (MARA15) is applied to raw fNIRS data. Visual inspection of
raw fNIRS data (blue line) shows clear motion spikes or artifacts. During the pre-processing step of
temporal processing, motion artifacts are detected and regressed from the data, resulting in data that
depict true brain activity (red line). * These data have been generated for illustration purposes; they
do not represent real participant data.

Baseline fNIRS data were obtained during 60 s periods of quiet, seated rest at the
beginning and end of balance tasks. Task-dependent neural data were acquired during
each balance task. Six balance tasks from the Berg Balance Scale (BBS; [27])—a measure that
has been validated for ABI populations [28]—were adapted and repeated for four trials at a
duration of 30 s per trial in a randomized block design, for a total of 24 trials. Task order
was randomly generated for each participant to prevent neural habituation using stimulus
presentation software, PsychoPy [29], which interfaced with Aurora via a lab-streaming
layer to segment the fNIRS data acquisition file with trial markers. BBS tasks included:
static stand with eyes open, static stand with eyes closed, tandem stand with the left foot
forward, tandem stand with the right foot forward, static single leg stand on the left leg,
and static single leg stand on the right leg; see Figure 3 for an example block design. During
balance tasks, participants wore a gait belt and were supported, as needed, by the study PI.
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Figure 3. Block Design of Balance Items. Six items were used from the Berg Balance Scale
(BBS) [27,28] to permit simultaneous fNIRS acquisition. The duration of each item was 30 s, and items
were presented four times each in a randomized block design for 24 trials. Prior to the start of balance
items and at the end of all balance items, participants completed a 60 s quiet seated rest period
(turquoise rectangles).

Balance Performance Scoring and Statistical Analysis: Due to adaptations that per-
mitted fNIRS data acquisition, standardized BBS scoring criteria could not be used. Thus,
balance was videotaped and evaluated using Functional Independence Measure (FIM)
scoring criteria, where scores range from Dependent (1) to independent (7) to indicate the
amount of assistance participants needed during each balance task [30]. Performance for
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each trial of the six tasks was documented and assigned a FIM score. Next, an average
score was calculated for each balance task (e.g., static stand with eyes open). A total score
was calculated by averaging the average scores from each of the six balance tasks. Finally, a
Wilcoxon signed-rank test was used to compare group pre-yoga and post-yoga total scores
with SPSS version 26 software.

3. Results

Overall, the study procedures were feasible; however, not all benchmarks were fully
met; see Table 1.

Recruitment and Retainment of Participants: Over six weeks, 12 adults (5 males, mean
age = 47.30, SD = 15.78) were recruited for pre- and post-yoga assessments and 8 weeks of
in-person yoga classes; see Table 2. All 12 participants completed pre-yoga assessments.
Six of the twelve participants were both eligible and agreeable to MRI scanning; four were
not assessed for eligibility due to limited funding, and two were eligible for MRI but
declined due to claustrophobia and/or dislike of MRIs. Nine of the twelve (75%) partici-
pants completed all or nearly all yoga sessions (average number of sessions attended 6.60,
SD = 1.90). Two participants had scheduling and transportation issues that prevented
regular yoga attendance, and one participant withdrew from the study due to an unre-
lated illness. Nine participants (83%) completed post-yoga assessments, but only seven
completed all post-yoga measures. Two participants only completed post-yoga self-report
measures due to pre-yoga fNIRS acquisition issues (N = 1) and a scheduling conflict that pre-
vented post-yoga fNIRS acquisition (N = 1). Finally, 5 of the 6 participants who completed
pre-yoga MRI scans also completed post-yoga MRI scans. No adverse events were reported
during yoga.

Table 2. Participant Characteristics.

ID Age at Study
Onset Sex Education Type of ABI Time since ABI # of Yoga Sessions

1 74 Female Did Not Report Stroke 13 years 8
2 55 Male Doctorate Severe TBI 2 years 7
3 66 Male Some College Stroke 2 years 8

4 29 Female High School TBI (severity not
reported) 4.5 years 2

5 56 Male Bachelor’s Degree Anoxic Brain Injury 8 years 8

6 57 Female Some College Multiple Strokes 20+ years (exact
# unknown) 7

7 29 Female Some College TBI (severity not
reported) 9 years Withdrew from

study

8 34 Female Some Graduate TBI (severity not
reported) 3.5 years 6

9 37 Male Some College Multiple
Concussions/mTBIs

1.5 years since
the most recent 8

10 30 Male Some Graduate Multiple
Concussions/mTBIs

13 years since
the most recent 7

11 33 Female Bachelor’s Degree Hydrocephalus 6 years Withdrew from
study

12 40 Female Master’s Degree Multiple
Concussions/mTBIs

1 year since the
most recent 5

Note: ABI = acquired brain injury, TBI = traumatic brain injury, mTBI = mild traumatic brain injury.

Safety of rs-fMRI Data Acquisition: MRI safety screening detected all contraindications
for MRI scans, and no adverse events occurred during pre- or post-yoga scans. Three
of the six participants had mobility impairments, but MRI-compatible devices were not
available during scanning. As such, physical assistance was provided by the study PI
to help participants ambulate to and from the scanner and to transfer from seated to
supine and supine to seated for scans. No participants sustained falls or near falls during
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scanning procedures. One participant experienced mild shortness of breath due to lying flat
during the pre-yoga MRI assessment, but the study team monitored closely and paused the
scan. This participant returned for the post-yoga MRI assessment and did not experience
shortness of breath during that scan.

Data Quality Indices of Pre-Processed rs-fMRI Images: All subjects retained over 80%
of time points. The highest retained 100%, and the lowest was 86.4%, all well within
the acceptable range. We also compared the 3dTQual statistics for the 6 MRI subjects to
the 3dTQual statistics for 51 healthy controls from the other study (used as a normative
sample). We z-scored the 6 subjects’ values in comparison to 51 subjects and then calculated
their percentile. The percentiles were 90th, 18th, 21st, 17th, 15th, and 28th. Since no value
exceeds 95%, the data supports the adequacy of alignment in this sample. Additionally, the
FD analysis produced FD figures with a range of 0.13 to 0.74 mm with a mean FD of 0.299
(just below a standard cutoff [25]). Two subjects had FD above the cutoff (0.74 and 0.31),
while the other four subjects were well below.

Group-Based Connectivity Map: The group connectivity map was deemed a valid
connectivity map, as connectivity (red areas) can be observed between the precentral
gyrus and multiple other brain areas that are associated with motor function: bilateral
insula, superior parietal lobule, paracentral lobule, posterior cingulate, superior and middle
prefrontal areas, occipital areas, and cerebellar areas; see Figure 4. Importantly, the pattern is
graded, showing transitional areas of connection rather than random pixelation; transitional
areas of connection are indicative of strong functional connections.
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Figure 4. Group Seed-Connectivity Map for Precentral Gyrus. This figure depicts group-level
connectivity between the precentral gyrus and multiple brain regions (in red). Importantly, the
pattern is graded, showing transitional areas of connection rather than random pixelation.

Safety and Quality of Functional Near-Infrared Spectroscopy (fNIRS) Data: Eleven of the
twelve participants attended pre-yoga visits for fNIRS data acquisition; one person did
not attend due to illness and an inability to reschedule prior to start of yoga. Of these
11 individuals, fNIRS data were acquired from 10 participants (90.90%). Adequate signal
quality levels could not be obtained from one participant who had thick, coarse hair that
prevented optodes from reaching her scalp. Of the 10 participants with pre-yoga fNIRS data,
post-yoga fNIRS data were acquired from 7 (see above for dropout details). Acceptable
signal optimization levels were reached, and all motion artifacts were successfully detected
and removed in 10 (90.9%) participants during the pre-yoga assessment and in 7 (100%)
participants during the post-yoga assessment.

Balance Performance Results: There were significant yoga-induced balance improve-
ments, as post-yoga total scores (Median = 5.33, SE = 0.37) were significantly higher than
pre-yoga total scores (Median = 4.67, SE = 0.49), p = 0.043; see Figure 5.
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Figure 5. Yoga-Induced Balance Improvements. At a group level (A), post-yoga balance was signif-
icantly better than pre-yoga balance, even with modification to the balance measure and scoring.
However, at an individual level (each participant is represented by a different colored line) (B),
changes in balance could not be detected in 2/7 participants (both with TBI) due to FIM ceiling effects,
although the majority had measurable improvements. Error bars represent standard error, * indicates
p < 0.05.

4. Discussion

Yoga may improve functional capacities, such as balance and brain function, in adults
with ABI. In order to test this hypothesis, feasibility objectives were developed and assessed.
All feasibility objectives, but the first, were fully met, and these findings provide important
insights. The partial achievement of the recruitment and retainment objective highlights the
limited transportation options available in the small city where this study was conducted.
Participants who could drive independently or be driven by care partners had more regular
attendance than participants who attempted to use public transportation. Additionally,
positive characteristics of the intervention were illuminated. Specifically, no participant
reported missing yoga because of an inability to engage in yoga class activities. This
indicates that the yoga intervention, which included varied adaptations and support,
provided a ‘just right challenge’ for these participants.

Another insight was that some aspects of acquiring MRI data were challenging. The
university’s MRI scanner is located in a non-medical research facility, so MRI-compatible
walkers and canes were not available. For future work, we have acquired MRI-compatible
mobility devices to support the broader inclusion of participants. Still, study outcomes
indicated that MRI study procedures were safe and could generate group-level data. Impor-
tantly, group-level data can show functional improvements in brain structure and function
from other interventions for adults with ABI (e.g., [31]. Thus, the methods tested in this
feasibility study have the potential to demonstrate how a hatha yoga intervention elicits
neural improvements in adults with ABI.

A final insight is that both high-quality fNIRS data could be acquired and pre-
processed with the included methods, which were novel and not previously tested. Further,
as in previous work [11], post-yoga balance improvements were observed. This likely
indicates that yoga-induced balance improvements are robust and can be detected even
when balance testing and scoring are modified to permit simultaneous neuroimaging.
Arguably, the success in preserving both balance and fNIRS data is the most impactful
outcome of this feasibility study.

Study Limitations: Despite achieving nearly all of the feasibility benchmarks, this study
had some notable limitations. First, all participants were recruited from a single small
city, which limits generalizability and had heterogeneous forms of ABI. Additionally, some
participants experienced scheduling and transportation issues, which limited participation.
In future studies, we should consider requesting information from participants (e.g., via
qualitative interviews) about their scheduling and transportation needs. This will allow us
to adjust class times to meet their needs and/or offer virtual attendance options (provided
that this does not pose a risk to safety). Additionally, in future studies to improve access to
yoga classes, we should seek additional funds to pay for transportation for participants
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who cannot drive or do not have caregivers available to drive them to classes. As another
limitation, pre-study activity levels were not formally assessed, nor did the research team
consistently monitor activity levels during the study. This could have influenced findings
and will need to be explicitly measured in future work. Additionally, we only had funding
to complete MRI methods with 6 of the 12 participants and lost 1 participant to follow-
up, so our MRI feasibility data may not be fully representative of our sample or the ABI
population. We also had some issues with MRI data quality due to participant movement
inside the scanners. In future work, this could be remedied by using a mock scanner and
providing additional training to participants to help them understand the importance of
eliminating or reducing head movement during scans. One final limitation was the use of
FIM scoring to evaluate changes in balance performance. Ceiling effects were observed,
which is a well-documented limitation of the FIM [32] despite visible but unquantifiable
improvements in stability and balance post-yoga. In future studies, inertial sensors or force
plates may be beneficial for quantifying improvements in balance quality [33].

5. Conclusions

Hatha yoga has the potential to improve functional capacities, such as balance and
brain function, in adults with ABI. Importantly, we observed improved balance after yoga
despite having a small sample size and modifying our balance assessment procedures to
permit simultaneous neuroimaging. Still, more research is needed to test for prospective
yoga-induced changes in brain function, and examination of brain function may require
more homogeneity in participant ABI injury type. Nevertheless, this study was com-
pleted to assess the feasibility of neuroimaging before and after a yoga intervention and
demonstrated successful achievement in acquiring safe and high-quality neuroimaging
data. These results support the use of neuroimaging before and after yoga in future pilot
study designs with adults with ABI.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13101413/s1, Figure S1: Example of Single leg balance, tree
pose/vrksasana with modification to support performance; Table S1: Weekly yoga activities with
reason and benefit.
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